Some magnetic properties of γ -Fe₂O₃ synthesized from ferrous fumarate half-hydrate

A. VENKATARAMAN

Postgraduate Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar 388 120, India

A. J. MUKHEDKAR*

Postgraduate Department of Chemistry, University of Poona, Pune 411 007, India

 γ -Fe₂O₃ synthesized from ferrous fumarate half-hydrate was studied by measurements of d.c. electrical conductivity, Seebeck coefficient, initial magnetization and magnetic hysteresis, and by Mössbauer spectroscopy and scanning electron microscopy. The phase transformation observed by electrical conductivity measurements matched well with the phase transformation observed by the variation with temperature of initial magnetization measurements of γ -Fe₂O₃; this magnetic study also established the single-domain character of γ -Fe₂O₃. The magnetic hysteresis values of the γ -Fe₂O₃ synthesized indicated improved values over that of a γ -Fe₂O₃ sample synthesized by established procedures. The scanning electron micrographs showed that the γ -Fe₂O₃ particles were acicular in shape and the Mössbauer spectrum showed a well-resolved six-band spectrum. The presence of a hydrogen ferrite phase was also confirmed by the electrical and magnetic measurements.

1. Introduction

Even after decades, γ -Fe₂O₃ maintains its lead over other magnetic tape recording materials [1, 2]. The synthesis of γ -Fe₂O₃ has been studied to some extent in detail [3, 4], but nevertheless research on the newer methods of synthesis for this material and on doped γ -Fe₂O₃ for the improvement of its magnetic properties is still being intensively pursued [1, 2, 4–9]. The reason for the extensive use of this material for magnetic tape recording purposes is because of its ideal combination of such magnetic hysteresis parameters as saturation magnetization (M_s) , coercive force (H_s) and squareness ratio (M_R/M_s) [10]. Pure γ -Fe₂O₃, i.e. vacancy-ordered γ -Fe₂O₃, is a ferrimagnetic material with the structural formula $\operatorname{Fe}_{8}^{3+}[\operatorname{Fe}_{40/3}^{3+}\Box_{1/8}]O_{32}$, where \Box indicates vacancy sites present in the lattice. Generally γ -Fe₂O₃ is used in the form of singledomain (SD) particles with acicular shape for a good signal-to-noise ratio on recording [10].

The existence of an intermediate phase, i.e. a hydrogen ferrite phase with a similar structural formulae to γ -Fe₂O₃ (an inverse spinel configuration with A and B sites) such as Fe₈³⁺ [Fe₁₂³⁺ H₄⁺]O₃₂, is established for the synthesis of γ -Fe₂O₃ by thermal decomposition study of ferrous oxalate dihydrate [5].

The use of d.c. electrical conductivity helps in knowing the phase transformation temperature (γ - to α -Fe₂O₃), and Seebeck coefficient measurement gives the number and nature of charge carriers as well as the phase transformation temperature. It is generally believed that the permeability (μ) or susceptibility (χ_i) of a magnetic material with SD grains always increases on heating and shows a peak (Hopkinson's peak) just before T_c (the Curie temperature) and then falls to zero rapidly [11]; hence γ -Fe₂O₃ should show this behaviour in the normalized plot of χ_i against temperature. The Mössbauer spectrum of γ -Fe₂O₃ should show six well-resolved narrow lines in the intensity ratio 3:2:1:1:2:3 and the effective magnetic fields at A and B sites should be comparable [12].

2. Experimental procedures

The procedures for the measurements of d.c. electrical conductivity, Seebeck coefficient, initial magnetization with variation of temperature, high-field magnetic hysteresis loop tracing (HLT) Mössbauer parameters etc. have been reported [5].

 γ -Fe₂O₃ was synthesized by the thermal decomposition of ferrous fumarate half-hydrate under a controlled atmosphere of dynamic air containing water vapour [7].

3. Results and discussion

Fig. 1 shows the plot of log σ against 1/T for γ -Fe₂O₃ under a static air atmosphere. First a decrease in conductivity σ up to 123° C was seen (Region A). The σ value then increased showing a kink (K), then on a further increase of temperature the σ value increased till there was a phase transformation to α -Fe₂O₃ with a broadening at this transformation temperature $(T_D - T_E)$. The cooling curve shows a hysteresis curve in which σ does not show any observable variation between 180° C and room temperature.

For the determination of factors responsible for the

^{*} Deceased, 10 October, 1985.

Figure 1 Plot of log σ against T^{-1} for γ -Fe₂O₃: (O) heating curve, (Δ) cooling curve.

observed maximum (V') in Region A, and the kink (K) in the curve, the σ measurements were carried out under different atmospheres. The results observed for the maximum V' and the kink K are similar to those observed for γ -Fe₂O₃ synthesized from ferrous oxalate dihydrate [5]. Hence these results for the kink (K) analysis indicate that a hydrogen ferrite phase with the formulae Fe³⁺₈ [Fe³⁺₁₂ H⁴₄]O₃₂ is present up to 180° C and at this temperature the hydrogen ferrite phase decomposes to give a vacancy-ordered γ -Fe₂O₃; on further raising the temperature there is a slow transformation of γ -Fe₂O₃ to α -Fe₂O₃ as indicated in Fig. 1 by the temperature regions T_D to T_E (i.e. 403 to 468° C).

The Seebeck coefficient measurements in Fig. 2 showed a fall in the number of charge carriers (nega-

TABLE	I	Magnetic	parameters
-------	---	----------	------------

Material	Saturation magnetization, $M_{\rm s}$ (e.m.u. g ⁻¹)	Coercive force, H _c (Oe)	Squareness ratio, $M_{\rm r}/M_{\rm s}$
Hydrogen ferrite phase	62.0	200.0	0.51
Vacancy-ordered γ -Fe ₂ O ₃	71.0	300.0	0.56

tive charge carriers) in the temperature region 115 to 145° C, and the number then remains almost constant up to 180° C. A further rise of temperature showed a rise in the number of charge carriers up to the transformation temperature. After the complete phase transformation from γ -Fe₂O₃ to α -Fe₂O₃ the nature of the charge carriers changes from negative to positive.

 γ -Fe₂O₃ used for magnetic tape recording should have SD grains with an acicular shape. Hence γ -Fe₂O₃ should show a slightly temperature-dependent magnetic hysteresis and a temperature-independent initial susceptibility below T_c (the Curie temperature) with the presence of a Hopkinson peak below T_c [11, 13]. The hydrogen ferrite phase should have a lower saturation magnetization (M_s) value than the vacancyordered γ -Fe₂O₃ [14, 15].

The magnetic hysteresis parameters for the hydrogen ferrite phase and vacancy-ordered γ -Fe₂O₃ (obtained by heating hydrogen ferrite under a dry dynamic nitrogen atmosphere at 200°C for four hours) are tabulated in Table I. The M_s value for vacancy-ordered γ -Fe₂O₃ is found to be higher than the M_s value observed for the hydrogen ferrite phase, as expected. All the magnetic parameters compare quite well with the expected values.

Figure 2 Plot of Seebeck coefficient against temperature T for γ -Fe₂O₃.

Fig. 3 shows the normalized $\chi_i - T$ curve obtained for vacancy-ordered γ -Fe₂O₃. The normalized χ_i values vary with temperature before the Hopkinson peak, indicating the SD behaviour of the sample, after this the χ_i value falls to zero (T_c) with some tailing.

The Mössbauer spectra of γ -Fe₂O₃ and that of hydrogen ferrite are very similar, with six well-resolved narrow lines (half-bandwidth of $0.285 \text{ mm sec}^{-1}$) in the intensity ratio 3:2:1:1:2:3. This nature of the spectra suggests that the effective magnetic fields at the A and B sites of γ -Fe₂O₃ are comparable, and that the magnetic SD grains are randomly oriented. The isomer shift (with respect to iron foil) and hyperfine field of these samples are very comparable (Table II). Hence

Figure 3 Plot of normalized susceptibility (χ/χ_i) against temperature T for γ -Fe₂O₃.

TABLE II Mössbauer param	eter (hyperfine field, kOe \pm 5.0)
Hydrogen ferrite phase	493.8
Vacancy-ordered γ -Fe ₂ O ₃	493.8

it can be said that the presence of the non-magnetic dopant H^+ at the lattice points does not affect the magnetic fields at the A and B sites.

The SEM photographs obtained for γ -Fe₂O₃ indicated that the particles were mostly of acicular shape.

4. Conclusions

The present study suggests the following important points.

1. The heating curve (log σ against 1/T) for γ -Fe₂O₃ under a static air atmosphere showed a decrease in σ up to 123°C, indicating the desorption of adsorbed water molecules. There was then an increase in the σ value with increase in temperature, with a kink indicating the presence of a hydrogen ferrite phase in the sample. Finally the transformation of γ -Fe₂O₃ to α -Fe₂O₃ occurred with a broadening in the curve.

2. The sign of the Seebeck coefficient for γ -Fe₂O₃ was negative until the phase transformation temperature.

3. There was a significant increase in the M_s values for a γ -Fe₂O₃ sample compared to that of the hydrogen ferrite phase, and all the magnetic parameters were in close agreement with reported values.

4. The normalized $\chi_i - T$ graph suggested that γ -Fe₂O₃ had SD grains.

5. The Mössbauer spectra for the hydrogen ferrite phase and vacancy-ordered γ -Fe₂O₃ were similar, indicating that the effect of the non-magnetic dopant H⁺ does not have any observable effect on the Mössbauer spectrum.

6. The scanning electron micrographs showed the particles to be 1.0 to 2.0 nm in size with an acicular shape.

Hence on the basis of the above study it can be said that the γ -Fe₂O₃ synthesized from FeC₄H₂O₄ $\cdot \frac{1}{2}$ H₂O had all the necessary parameters for being used as an efficient tape recording material.

Acknowledgements

Financial assistance for this work was given by a Grantin-aid from the Ministry of Defence, Government of India. Thanks are due to Professor C. R. K. Murty, T.I.F.R., Bombay, for his kind help in carrying out the magnetic measurements. One of the authors (A.V.) thanks the Head, Department of Chemistry, Sardar Patel University, for his help and encouragement.

References

- 1. R. M. WHITE, J. Appl. Phys. 57 (1985) 2996.
- 2. M. P. SHARROCK and R. E. BONDER, *ibid.* 57 (1985) 3919.
- 3. R. VENKATESH, A. L. SASHIMOHAN and A. B. BIS-WAS, J. Mater. Sci. 9 (1974) 430.
- 4. K. SESHAN, H. R. ANANTHARAMAN, R. VENKA-TESH, A. L. SASHIMOHAN, H. V. KEER and D. K. CHAKRABORTY, *Bull. Mater. Sci.* 3(2) (1981) 201.
- 5. K. S. RANE, A. K. NIKUMBH and A. J. MUKHED-KAR, J. Mater. Sci. 16 (1981) 2387.
- 6. A. VENKATARAMAN, V. A. MUKHEDKAR, M. M. RAHMAN, A. K. NIKUMBH and A. J. MUKHED-KAR, *Thermochemica Acta* **112** (1987) 231.
- 7. Idem, ibid. 115 (1987) 215.
- 8. M. M. RAHAMAN, V. A. MUKHEDKAR, A. VEN-KATARAMAN, A. K. NIKUMBH and A. J. MUKHED-KAR, *ibid.* **125** (1988) 173.
- 9. A. VENKATARAMAN, V. A. MUKHEDKAR and A. J. MUKHEDKAR, J. Th. Anal. (1988) communication.
- 10. G. BATE, in "Magnetic Oxides", Vol. 2, edited by D. J. Craik (Wiley-Interscience, London, 1975) Ch. 12.
- 11. C. R. K. MURTY, J. Geol. Survey India 26 (1985) 640.
- W. H. KELLY, V. J. FOLEN, M. HASS, W. N. SCHREINER and G. B. BEARD, *Phys. Rev.* 124 (1961) 80.
- R. NAGARAJAN and C. R. MURTY, Bull. Mater. Sci. 3(2) (1981) 217.
- D. KHALAFALLA and A. H. MORRISH, J. Appl. Phys. 43 (1972) 624,
- 15. A. K. NIKUMBH, PhD thesis, University of Poona (1982).

Received 26 October 1987 and accepted 23 February 1988